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New dispersion relations are derived for the s-wave pion-nucleon scattering amplitudes. These relations 
are specifically chosen to facilitate the task of separating the two-pion exchange term from the other effects 
contributing to low-energy pion-nucleon scattering. In these equations the contribution from the unknown 
short-range terms is markedly suppressed, a greater emphasis is placed on the experimentally better estab
lished very low energy pion-nucleon data, in particular on the scattering lengths, and in the contribution of 
the two-pion exchange term the lower energies are more heavily stressed. The terms due to the two-pion 
exchange, which we isolate, are very clearly recognized by their characteristic energy dependences. 

The two-pion exchange terms are analyzed in terms of the interaction between the two pions. The values 
obtained for these terms are made to yield information about the phase shifts for pion-pion scattering in 
the r==l and T = 0 states. 

In the T— 1 state the data are well fitted with a narrow £-wave resonance in the pion-pion system at 750 
MeV. Taking the results of electron-nucleon scattering experiments in conjunction with the present data, 
the half-width of this resonance is found to lie between 40 and 60 MeV, in agreement with the experimental 
data for the observed p meson. 

In the T=0 state the data are fitted with a two-parameter form for the 5-wave pion-pion phase shift. 
Both of these parameters are not simultaneously determined by the present data. As an added restriction 
on the phase shift it is required to lead to agreement with the experimental results for the process p-\-d —» 
He3-f-2ir. This singles out a T = 0 s-wave phase shift with a scattering length of #o~1.6 (units # = /x = c = 1). 

1. INTRODUCTION 

THE concept of a nucleon possessing "structure" 
is a well-established one, both experimentally 

and theoretically.1 This structure is envisaged phe-
nomenologically as a "cloud" of virtual strongly inter
acting particles surrounding a central core. The outer
most particles of this "cloud" will be the lightest ones, 
the pions. When pions are scattered by nucleons, a 
part of their interaction will be with these virtual pions 
of the "cloud." If a suitable method of analysis were 
available, it should thus be possible to derive infor
mation about pion-pion interactions from the experi
mental data on pion-nucleon scattering. 

In the language of dispersion relations the interaction 
between the scattered pions and the pions of the 
nucleon cloud is represented as the two-pion or many-
pion exchange terms. A method has recently been 
developed2-4 to isolate the two-pion exchange term 
from the other terms contributing to pion-nucleon 
scattering. This method involves partial-wave dis
persion relations for pion-nucleon scattering and uses 
the s-wave pion-nucleon phase shifts to determine the 
two-pion exchange term. The two-pion exchange term 
can be analyzed in terms of the interactions between 

* This work has been supported in part by the Air Office of 
Scientific Research OAR (European Office, Aerospace Research 
USAF). 
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Illinois, Urbana, Illinois. 

1 See, for example, S. D. Drell and F. Zachariasen, Electro
magnetic Structure of Nucleons (Oxford University Press, New 
York, 1961). 

2 J. Hamilton, P. Menotti, and T. D. Spearman, Ann. Phys. 
(N. Y.) 12, 172 (1961). We refer to this paper as I. 

3 J. Hamilton, P. Menotti, T. D. Spearman, and W. S. Wool-
cock, Nuovo Cimento 20,519 (1961). We refer to this paper as II. 

4 J. Hamilton, T. D. Spearman, and W. S. Woolcock, Ann. 
Phys. (N. Y.) 17, 1 (1962). We refer to this paper as III . 
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the two pions and information has thus been obtained 
about pion-pion scattering in the T=0 and T = l 
states.5 

In the present paper, a refined form of the above 
method for analyzing pion-nucleon scattering is pre
sented and applied. This uses new dispersion relations 
which are specifically chosen so that the two-pion 
exchange term may be isolated in a more decisive and 
clear-cut way. 

The results obtained for the two-pion exchange term 
are analyzed to give information about the T— 1 and 
r = 0 pion-pion phase shifts. The T=\ data are found 
to be well explained by a £-wave pion-pion resonance 
at 750 MeV corresponding to the experimentally 
observed p meson.6 Because of the high energy of the 
p meson, the approximations normally made in solving 
the integral equations for the amplitudes 7r+7r —> N+N 
break down. Without information about four-pion 
states it seems that we cannot solve the equation and 
thus determine the T = l , 7 = 1 pion-pion phase shift. 
We can instead, however, combine the results of 
electron-nucleon scattering experiments with the 
present data and this enables us to predict a value for 
the width of the p meson which is in agreement with 
the experimentally observed values. 

To fit the T=0 data we use a two-parameter form 
for the s-wave pion-pion phase shift. Fitting with the 
present data only determines one of these parameters. 
To fix the second parameter we use the experimental 
data obtained by Abashian, Booth, and Crowe7 for the 

6 J. Hamilton, P. Menotti, G. C. Oades, and L. L. J. Vick (to 
be published). We refer to this paper as IV. 

6 For a comprehensive bibliography see M. L. Stevenson, 
University of California Lawrence Radiation Laboratory Report, 
UCRL-9999 (unpublished). 

7 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev. 
Letters 7, 35 (1961). 
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process p+d —> He3+27r. If we impose the requirement 
on the r = 0 , .7=0 phase shift that, as well as satisfying 
the requirements from pion-nucleon scattering, it also 
leads to agreement with the above experimental data, 
we find that this phase shift is now uniquely determined. 
Good agreement with the above experimental data is 
obtained. 

In Sec. 2 we introduce the necessary notation and 
describe the new dispersion relations. In Sec. 3 we 
present the calculated values for the two-pion exchange 
terms and discuss their analysis. In Sec. 4 we discuss 
the process p-\-d —»He3+27r and fit the experimental 
data with a two-pion final-state interaction. In Sec. 5 
we conclude and summarize the results. 

2. THE NEW DISPERSION RELATIONS 

A. Notation 

We shall summarize the notation, which is the same 
as in I. 

The invariant scalar amplitudes A±(s}t,s), B±(s,t,s) 
are related to the amplitudes with isotopic spin F=f, 
T=\ (in the pion-nucleon channel) as follows: 

A + =\{A™+2A™\ 

A-=\{AW-A%*\ (1) 

and similarly for B±. We shall refer to the pion-nucleon 
scattering channel as channel 3, the crossed pion-
nucleon channel as channel 1, and the channel T+V —> 
N+N as channel 2. The squares of the energy in the 
center-of-mass system in these three channels are s, s, 
and tj respectively. The amplitudes A+, B+ refer to 
isotopic spin T=0 and A", Br to T= 1 in channel 2. 

To relate the partial-wave amplitudes to the in
variant amplitudes we define functions 

(W+MY-1 
fxm= lAW+(W-i£)BW], 

16wW2 

(W-M)2-l 
/,<*> = [ _ ^ ( D + ( p F + M ) j g ( r ) ] ) (2) 

16irW2 

where W=\/s, M is the nucleon mass, and we have 
put the pion mass equal to unity. The superscripts T 
denote the isotopic spin of the pion-nucleon system in 
channel 3. The 5-wave pion-nucleon amplitudes foT(s) 
are given in terms of / i m , /2(:r) by 

/o rW = i J ix Wv+xfrV), (3) 

where #=cos0, 0 is the center-of-mass scattering angle 
for channel 3, and 

f0
T(s)^ei^sin8T/q 

are the s-wave scattering amplitudes, q is the magnitude 

of the center-of-mass momentum in channel 3 and ST 
are the s-wave pion-nucleon phase shifts. 

B. Analytic Properties 

The Mandelstam representation tells us the singu
larities of the invariant amplitudes A±(s,t,§), B±(s,t,s). 
We may use Eqs. (2) and (3) to deduce the singulari
ties of foT(s). These singularities are shown in Fig. 1. 
A detailed discussion of these singularities has been 
given by Kennedy and the present author.8 Knowing 
these singularities we could proceed as in I-IV to write 
dispersion relations for foT(s). We shall instead define 
a new function 

goT(*) = f<?(*)/B(s), (4) 
where 

B(s)={ls-(M-1YX(M+I)2s^\ (5) 

B(s) is defined in the cut s plane with cuts along the 
real axis from — QO to (M— l)2 and from (M+l)2 to °o 
so as to be real and positive on the real axis between 
(M—l)2 and (M+l)2 . We shall now consider the 
properties of goT(s). 

It follows from the definition of B(s) that, as shown 
in Fig. 2, when € is a small positive quantity, 

B(s+ie)=-i\B(s)\, 

B(s-ie) = +i\B(s)\, for s real^ (M+l)2 ; 
and 

B(s+i€) = +i\B(s)\, 

B(s-u)=-i\B(s)\, for s real^ (M- l ) 2 . 

It follows from these relations that for real s: 

gT(s+i<)-gT(s-ie) = ±2i[_RefoT(s)/\B(s)\l (6) 

according as s^ (M+l)2 or s^ (M—l)2. 
When 5 lies on the circle \s\ =M2— 1, we may show 

that, if s = ( M 2 - i y * , 

B(s) = e^/2\B(s)\. (7) 

This is seen from Fig. 2. 
By definition 

B(s)= (ACXBC)1^**-**"*. 

Since OAXOB=OC2, it follows that the triangles 

SAMPLE* ? plrANE; 

ISt = M ? - u 2 

\ "Crossed" Cut / / r „ / 
\ „3 2 / / Physical Cut 

FIG. 1. Location of the singularities of the pion-nucleon partial-
wave amplitudes in the complex 5 plane. 

8 J. Kennedy and T. D. Spearman, Phys. Rev. 126,1596 (1962). 
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OAC, OCB are similar and so that #2= /.OCA. So 

The singularities of gorCs) in the s plane will be the 
same as those of foT(s), i.e., those shown in Fig. 1. The 
only singularities introduced by the factor 1/B(s) are 
the cuts on the real axis from — 00 to (Af — l)2 and from 
(M+l)2 to oc and these are already present in foT(s). 

C. The Dispersion Relations 

We may now write the following dispersion relations 
for g0

T(s): 

1 /•- Re/or(*') 
KegoT(s)— / ds' 

TT J (M+D* \B(s')\ (Sf — S) 

I -il/2+2 Im/0
r(*') 

TTJiM-l/M)* \B(S')\(S' — S) 
-ds' 

+-
1 /•<"-»" RefoT(sf) 

• 

•Jo \B(s')\(s'-s) 
-ds' 

1 /•» Re/0
y( /) R0

T 

\B(s')\(s'-s) 

1 

+- J CI, 

A / 0
r ( 5 ' ) e - ' * ' / 2 

2 « ./circle \B(s')\ (S'—S) 
-ds' 

= 3Dr0). (8) 

A "principal value'' is to be taken for any integral in 
which (sf—s)~1 becomes singular. Af0

T(s') is the 
discontinuity in foT(s') across the circle. i?o is the 
residue of a possible pole at the origin. We have used 
Eqs. (6) and (7) to express the integrands in terms of 
foT(s). We follow the notation of I-IV and call £>T(s) 
the "discrepancies." It is clear that 

Regor(*)= ~Imf0
T(s)/B(s), for real s^ (M+l)2 , 

Reg0
r(s) = +ImfoT(s)/B(s), for real 5^ (M-l)2. 

VLG. 2. Properties of the function B(s) s { [>- {M-1)2] 
X[(if-j-l)2—s]}1/2 in the complex 5 plane. 

All the terms on the left-hand side of Eq. (8) can be 
evaluated in terms of the low-energy pion-nucleon 
data9 for values of s above (M+l)2 = 59.6 up to, say, 
76. These terms can also be evaluated, using the 
"crossing relations" for the amplitudes A±(syt,s)f 

B^is^s), for s below (ikf-l)2=32.2 down to, say, 20. 
The crossing procedure introduces all partial waves 
but for s^ 20 we shall not be concerned with very high 
energies in the crossed channel and it sufiices to consider 
5, p, d waves. So we can evaluate £)T(s) in the regions 
2 0 ^ 3 2 . 2 and 5 9 . 6 ^ 7 6 . 

D. Separation of the Two-Pion Exchange Term 

The term which we wish to isolate is the third on the 
right-hand side or rather the part of that term coming 
from the front of the circle, say | # | ^60° where 
s=(M2— l)ei4>. The circle cut comes from the de
nominators t'—t which means that it arises from channel 
2 processes, 7r+7r —> N+N. Low energies in this channel 
correspond to the two-pion exchange term in pion-
nucleon scattering. Although a single value of / does 
not map onto a single point in the s plane on account 
of the x integration in Eq. (3), it maps into a range of 
points which has the property that as / increases above 
4 the smallest phase angle <j> on the circle increases. 
Thus for each value of <t> we get a maximum value of / 
contributing. So the front of the circle, say \<f>\ ^60°, 
is restricted to the lower energies in channel 2 and 
arises primarily from the two-pion exchange. 

The way in which we separate out the contribution 
from the front of the circle to 3D7 (s) is the same as that 
used in II, III, and IV. But in the present case the 
isolation of this term is made much more simple by the 
special properties of Eq. (8) which we shall discuss 
below when we compare this equation with the analo
gous one in I-IV. 

To distinguish the term from the front of the circle 
from the other terms contributing to £>T(s), we "attack 
this term on both flanks." We evaluate £>T(s) both in 
the physical region s^(M+l)2 and in the "crossed" 
region s^(M— l)2. Since the front of the circle lies 
between these two regions, we might expect that the 
term arising from this should show a marked variation 
of energy dependence between these regions. That this 
is so is clearly seen from the results in Figs. 3 and 4. 
The energy dependence in both of these graphs, as 
shown by the solid lines, is in fact due entirely to the 
front of the circle: The contribution from the other 
terms is well represented by a constant. It is clear, 
however, that even if the remaining terms did con
tribute an energy-dependent effect, this could be 
separated from the very characteristic energy de
pendences associated with the front of the circle both 
in the case of S)~(s) and SD+O). 

Because of the proximity of the front of the circle 
9 The third term on the left of Eq. (8) involves only the pion-

nucleon coupling constant /2 . It is evaluated using /2=0.081. 
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FIG. 3. £)~(s). The calculated values are represented by small 
circles. The solid curve is SD*-*-^), for a 5 function at 2=28 with 
Ci= —1.4 and integration on the circle only for \<f>\ ^60°, plus a 
short-range constant term represented by the dashed line. 

to the physical region we interpret this as giving rise 
to a long-range interaction. We have seen above that 
as the phase angle <t> on the circle increases, so does the 
maximum value of t introduced at that point. In other 
words, as we move on the circle further away from the 
physical region, the mass of the exchanged system is 
permitted to increase thus causing forces of shorter 
range. Similarly we interpret the remaining terms on 
the right of Eq. (8), coming from beyond the origin, 
as being associated with short-range forces. A discussion 
of this relation between the position of singularities and 
the range of the corresponding forces is given in I I I . 

E. Comparison with the Earlier Method 

Equation (8) differs from the corresponding equation 
used in I - IV in two important respects. The main 
consequences of these differences are (1) to suppress 
the terms other than from the front of the circle on the 
right of Eq. (8); (2) to emphasize more heavily the 
lower t values in the contribution from the front of the 
circle, and (3) on the left-hand side of Eq. (8) to lay 

FIG. 4. £)+(s). The calculated values are represented by small 
circles. The solid curves correspond to solutions 1 to 4 of Table III 
plus short-range constant terms lying between —0.0048 and 
-0.0051, 

more stress on the contribution from very low energy 
pion-nucleon data, which are best established experi
mentally, and in particular on the scattering lengths. 

These two main points of difference are: Firstly, the 
integrals over the real axis singularities involve Re/o^Xs) 
instead of Im/o^s ) . This fact in itself leads to a sup
pression of the short-range, or high-energy, effects 
since at high energies interaction amplitudes are ex
pected to become largely imaginary. Secondly, and of 
great importance for the present application, the 
integrands contain the weighting factor \B(sf)\~1. 
This factor is responsible for the desired effect of 
suppressing the short-range effects, of emphasizing the 
contribution of the low-energy pion-nucleon data, and 
of stressing the lower energies of the two-pion system 
in the exchange graph. 

The suppression of the effect of distant singularities 
is clearly seen since for large \s'\, \B(sf) \~l is like 1/V. 
On the other hand, when we come near to the thresholds 
( M ± l ) 2 , we see that | J B ( V ) | - 1 diverges as 
\s— (M±l) 2 | ~ 1 / 2 . This divergence disappears on inte
gration but it clearly stresses heavily the values of 
Re/ 0

T (y) at the twro thresholds, which depend on the 
scattering lengths ah a3. Representative values of 
| B (sf) | _ 1 along the real axis are shown in Table I. On 
the front of the circle l l ^ s ' ) ! - 1 decreases as we move 
away from the real axis, i.e., as \<t>\ increases. This 
causes the lower energies in the two-pion system to be 
stressed. Values of | j 5 ( y ) | - 1 for different values of the 
phase angle <j>r are shown in Table I I . 

On the front of the circle, and particularly for the 
smallest values of / which are most heavily stressed, 
<j>/2 is small. Consequently the factor e~~i<i>12 in the 
third term on the right of Eq. (8) is approximately real. 
This means that the s dependence of this term should 
be approximately similar to that of the corresponding 
term in papers I I , I I I , and IV. That this is so is seen 
from a comparison of Figs. 3 and 4 with the correspond
ing graphs in I I I . 

3. CALCULATION AND ANALYSIS OF THE 
TWO-PION EXCHANGE TERMS 

The discrepancies ^ ( Y ) were calculated for s in the 
ranges 2 2 ^ 3 2 . 7 = (Af-1) 2 and (M+l)2=59.6^s 
^ 7 6 . The pion-nucleon phase shifts used are those 
described in paper IV.10 The results obtained are shown 
in Figs. 3 and 4. We now discuss the analysis of these 
results in terms of the pion-pion interaction in the 
T= 1 and T=0 states. 

The discontinuity in foT(s) as we cross the circle, 
AfoT(s), arises from the discontinuities in the invariant 
amplitudes A±(s,t), B±(s,t). The discontinuities in 
the invariant amplitudes across the circle are 
2i ImA K^isj), 2% I m ^ ^ ^ ^ O where ImA^isj), 
ImBKT

±(s,t) represent the absorptive parts of the 

10 I am grateful to P. Menotti who provided me with tables of 
values of Re/0

rC?3) and lm/o7 '03). 
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TABLE I. Values of \B(sf) I"1 for real s'. 
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0 10 20 25 32.7 59.6 65 70 100 

0.023 0.030 0.045 0.061 0.076 0.051 0.032 0.019 

invariant amplitudes in channel 2, 7r+7r—> A^+iV. 
These are given as follows in terms of the helicity 
amplitudes f±J(() for this process,11 which represent 

states with total angular momentum / and where the 
subscript is + or — according as the nucleon and 
antinucleon have the same or opposite helicities. 

$7T °o 

lnui„<±>(s,0 = — £ {J+mp-qiY 
pj J=o 

Pj{cos6z) Imf+J(0-
M 

MJ+DJI* 
cos03iy(cos03) lm/_y(0 

q3, p-

'-i C / ( / + i ) ] 1 / 2 

. and cos^3 are defined by the relations 

^ 4 ( l + g 3
2 ) = 4(M2~i>_2), 

COs03= (s-pJ+q32)/2ip-qz. 

The isotopic spin superscripts for the f±J(t) have been 
suppressed. AfoT(sz) can now be expressed in terms of 
the lmf±

J(t) by using Eqs. (2) and (3). The contri
bution to the discrepancy is given by the third term 
on the right-hand side of Eq. (8) which we shall denote 
by SD^fa) . Equations (2), (3), (8), and (9) enable us 
to write 

(9) 

iip-qzY^Pj' (cos03) Im/_ J ( / ) . 

S)T,HS) 
/

cf>ma,x /* t m s 

-<£max J 4ju2 

dt'ZK%Hs,<t>f,0 

Xlm/ rK/ ' ) , (10) 

where /^(t) are the relevant helicity amplitudes f±J(tf) 
which may contribute and Ki

±{s,(i>f,tf) are appropriate 
kernels which will be complex. The <f>f integration refers 
to the integration around the circle, a point s' on the 
circle being represented as (M2—l)ei4>'. The limit of 
integration </>max is normally taken to be 66°. Above 
this angle it has been shown that the partial-wave 
expansion (9) breaks down and so we conveniently 
take this angle as the limit of our "front of the circle'' 
region. We may perform the <£' integration in Eq. (10) 
and rewrite this as 

SWK*): 
Jin' 

dt'ZKiHstflmfiHl'). (11) 

The kernels Ki
±(sJt) can be evaluated using Eqs. (2), 

(3), (9), and (10). Equation (11) thus provides the 
link which enables us to obtain information about the 
helicity amplitudes f±J(t) from the calculated values 
of £>„*(*). 

The analysis may be carried a stage further by 

relating the helicity amplitudes f±J(t) to the phase 
shifts 5jT for pion-pion scattering. The relationship is 
due to unitarity which requires the phase of f±J(t) 
for 4JU 2 ^/^16JU 2 to be 8j(t). This enables us to write 
approximate integral equations for f±J(t). 

The helicity amplitudes are analytic in the / plane 
with the exception of cuts from - c o to a=4/x2(l—ju2/ 
4M2) and from 4/i2 to + co. Imf±J(t) is determined for 
O^t^a by the Born term alone. For 2<0 it is related 
to pion-nucleon scattering and may be determined by 
an analytic continuation of pion-nucleon data. This 
continuation is performed in the usual way by making 
a partial-wave expansion: However, for t< — 25/x2 this 
partial-wave expansion ceases to converge so that we 
cannot determine Imf±J(t) beyond this point. 

We may use the analyticity properties of f±J(t) to 
write the following approximate equation12,13: 

f±
j(t)expl-uj(l)2 

1 /•• e x p [ - « , ( 0 ] I m / ± ' ( * ' ) 

where 

1 ra 

= - / dt'-

t r 8/(0 
uj(t) = - / dt' . 

W v t'(l'-t) 

t'-t 

5 / ( 0 

, (12) 

The approximation made in (12) is to neglect other 
than two-pion intermediate states on the cut />16/x2. 
We might expect this to be a good approximation for 
values of t somewhat larger than 16ju2 where the cross 
section for four-pion processes should still be small. 
For energies appreciably above 16ju2 many-pion proc-

TABLE II. Values of | B(sf) I"1 for *'= {M^-V)e^'. 

</>' 
\B{s>)\-i 

0 

0.075 

15° 

0.057 

30° 

0.038 

60° 

0.022 

90° 

0.016 

11 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 
12 R. Omnes, Nuovo Cimento 8, 316 (1958). 
13 W. Frazer and J. R. Fulco, Phys. Rev. 117, 1603 (1960). 
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esses will play a significant role. To minimize the effect 
of these we use a subtracted form of Eq. (12). Since 
we cannot calculate Imf±J(t) for t < — 25/*2, we have 
to cut off the integral in Eq. (12) at this energy. To 
justify this neglect of the cut t < — 25ju2 we again need 
subtractions in Eq. (12). The point 2=0 is conveniently 
chosen as a subtraction point since the subtraction 
constants at this point are related to the pion-nucleon 
forward scattering amplitudes.1415 

So we might expect Eq. (12), suitably subtracted, to 
determine the helicity amplitudes f±J(t) for 4M2 ̂ t 
^ 16/x2, or perhaps to slightly higher values of t, in 
terms of the pion-pion phase shift 8j(t). The helicity 
amplitudes in turn are related to the quantities SDT*^) 
by Eq. (11). Thus these two equations relate the 
quantities SDx^fa), which we have calculated from 
low-energy pion-nucleon scattering data, to the pion-
pion phase shifts dj(t). We may now proceed to discuss 
the analysis of our calculated values of ^(s) in terms 
of pion-pion phase shifts. 

A. Analysis of £r (s ) 

£r(s) corresponds to isotopic spin T= 1 in channel 2. 
A pair of pions having T— 1 must have a total angular 
momentum / which is odd. 

Experiments on the production of pions in pion-
nucleon interactions and on proton antiproton an
nihilation into pions have shown that a pion-pion 
"resonance" known as the p meson, with an energy of 
about 750 MeV and having T=J=1, appears to be 
the dominant feature in the T—\ two-pion system at 
reasonably low energies.6 The nucleon form factor data 
seem to be well described by a model which approxi
mates to the T= 1 two-pion states by the p meson alone. 
Consequently we shall examine whether the data for 
£r(s) can be explained in terms of the exchange of a 
p meson without taking further account of the two-pion 
exchange term. Before doing this we discuss briefly the 
analysis of the nucleon form factor16 data in terms of 
the p meson. 

The Nucleon Form Factors 

The electric and magnetic nucleon isovector form 
factors Fiv(t), F2

v(t) obey the dispersion relations 

e t r00 ImF^it'W 

(13) 
eg t r"lmF?(t')dt' 

2M wJi tf(t'-t) 

where g is the (anomalous) gyromagnetic ratio. Uni-

14 J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961). 
16 P. Menotti, Nuovo Cimento 23, 931 (1961). 
16 See the article by W. R. Frazer, in Dispersion Relations, 

edited by G. R. Screaton (Oliver and Boyd, Edinburgh, 1961). 

tarity relates ImFiy(/) to the T = l pion-pion phase 
shift and to certain linear combinations of the helicity 
amplitudes and in particular tells us that these spectral 
functions are zero when the pion-pion phase shift h\{t) 
is zero. If we are taking account of the p meson alone, 
since this is reasonably narrow and also since we only 
compare Eq. (13) with experimental results for t^O, 
it is a good approximation to replace ImFi,2v(t) by 5 
functions, 

ImF<»(0 = arf (*-/*), (14) 

where tR~28 for the p meson. The linear combinations 
of the helicity amplitudes which are related to ImFiv(t) 
by unitarity are 

r1(0 = M/(M2-//4)[(//4v^M)/_1(0~/+
1W]3 

r 2 ( 0 = i ( M 2 - / / 4 ) - 1 [ / , H 0 - (M/WfJffl. (15) 

If we again make a S-f unction approximation17 

ImTi(t) = TCi8(t-tR), (16) 

then unitarity relates aif C» and the pion-pion phase 
shift. Representing this phase shift by a resonance 
formula 

eih sm8i=yq2Z/(tR-t—iyq2?), 

where #3 is the pion momentum in the center-of-mass 
system, the relation is 

a^-wedtR^/y. (17) 

Substituting from Eq. (14) in Eqs. (13) gives 

Fi'(t)=(c/2)ll+a/(tR-t)3, 

F?(t)=(eg/2M)[l+b/(tB-t)J (18) 

Here, a= -2C1 / (7^1 / 2) ) b= - (2M/g)C2/(ytR
m). Equa

tions (18) give agreement with the experimental data 
for a~b~ 1.6. This gives the results 

C2~(g/M)Ci**0.27Ci, (19a) 

7 = - 2 C 1 / ( 1 . 6 ^ 2 ) . (19b) 

h-Function Fit to S)~(s) 

We shall now attempt to fit the data for £>~(s) shown 
in Fig. 3 with a 5-function approximation to the helicity 
amplitudes /^(Z), f - 1 ^ ) , to correspond to the p meson. 
We write 

Imf±i(t) = C±5(t-tR). (20) 

Equations (15) and (16) may be used to replace C± 

by C\ and Co: 

C+=-(7r/2)(C2tR+2MCl), 

CL= -TTV2(CI+2MC 2 ) . (21) 

We use Eq. (19a) so that there only remains one free 
parameter which we take to be G. The contribution 

17 J. Bowcock, N. Cottingham, and D. Lurie, Nuovo Cimento 
19, 142 (1961). 
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to the discrepancy £>rir~~(s) may now be calculated and 
depends only on C\. 

Very good agreement with the calculated data for 
£)~(s) is obtained with a value C i= —1.4, taking IR—28. 
This provides the entire energy dependence of 5X~(s): 
The remaining short-range terms are only required to 
contribute a small and constant amount. The inte
gration on the circle was over the range \<t>\ ^60° . The 
result is shown by the solid line in Fig. 3 ; the broken 
line represents the constant short-range term. 

Unfortunately, the value obtained for C\ is rather 
sensitive to the cutoff angle on the circle. For example, 
integrating to 90° instead of 60° gives a comparably 
good fit with the data and leads to a value of C\~ —0.9. 
This corresponds to the results obtained in paper IV 
where a good fit was obtained for Ci= —1.33 but this 
could be altered to —1.05 by allowing a somewhat 
energy-dependent short-range term. Such an energy-
dependent term could probably have been provided 
by the part of the circle 6 0 ° ^ \<t>\ ^90° . We conclude 
that |Ci | is probably less than 1.4 and that 

- 1 . 4 ^ ( ^ - 0 . 9 . 

The form of ^r(s) does not depend very critically 
on the value of IR. An optimum fit is obtained for tR 

in the neighborhood of 28 but good agreement could 
still be obtained, for example, with two 5 functions, the 
most important one at ^ = 2 8 but a second one at, say, 
/#= 16 to correspond to the f meson.18 This would lead 
to a smaller | C\ j for the tR = 28 term. 

An attempt to relate the helicity amplitudes f±(t) 
to the pion-pion phase shift 8i(t) for a resonance at 
£—28 using the integral Eq. (12) so far has not been 
successful. This is presumably due to the necessity of 
taking account of inelastic processes. A discussion of 
this problem is given in paper IV. 

I t is still possible to obtain information about the 
T = 1 pion-pion phase shift, without solving an integral 
equation. This is through Eq. (19b) which relates G 
to the width of the pion-pion resonance. Thus a value 
of C i= —1.4 gives 7=0.33 and the half-width of the 
resonance at half maximum 60 MeV. C i= — 0.9 gives 
7 = 0.21 and the half-width 40 MeV. So the limits 
which we placed on C\ would suggest that the half-
width of the resonance should be between 60 and 40 
MeV. This is in good agreement with experimental 
results for the width of the p meson.18 

I t should be pointed out that the derivation of Eq. 
(19b) involved a neglect of inelastic processes. This 
could be a source of inaccuracy. 

B. Analysis of 23+(s) 

3D+(J) corresponds to isotopic spin T = 0 in channel 2. 
A pair of pions having T=0 must have even angular 
momentum / . Since we are chiefly concerned with 

reasonably low energies in channel 2 we might expect 
that only the s wave should be important, so we attempt 
to fit the data for £)+(s) in terms of the 5-wave term 
only. 

There is only one s-wave helicity amplitude,/^0 (0-
Equation (11) then becomes 

/.(max 

®««+(s)= / dt' K+°(s,t') I m / + ° ( 0 , (22) 

and /+ 0 (O is related to 50(O by a suitably subtracted 
form of Eq. (12). I t appears that two subtractions are 
needed in this case. The argument for this is as follows. 
For a^/^—25/x2 where the partial-wave expansion is 
valid, Im/ + ° (0 is found to be well approximated in 
terms of the T = f , / = § pion-nucleon resonance alone. 
This contributes to Im/ + ° (/) a term which behaves like 
/ as t —-> — oo [see Eq. (9)]. Consequently, it would 
seem that two subtractions should be made in Eq. (12) 
to bring the integral into a convergent form and thus 
reduce the sensitivity to the cutoff position. A further 
discussion on this is given in paper IV. 

We use the values for the two subtraction constants 
obtained by Menotti15 and evaluate the integral equa
tion (12) using the same pion-nucleon data as in IV. To 
analyze the data for &+(s) we start with various forms 
of the T=0 phase shift which we express in a two-
parameter form, on the basis of a one-pole approxi
mation to the N function in the N/D solution to the 
Chew-Mandelstam equations. The two parameters are 
the position and residue of this pole. These values are 
varied over a wide range and for each pair of values the 
integral equation (12) is solved. The results are substi
tuted in Eq. (22) and compared with the experimental 
data for £>+(s) shown in Fig. 4. Before discussing the 
results we briefly summarize the phase-shift parametri-
zation procedure. 

One-Pole Pion-Pion Solutions19 

The r = 0 , 7 = 0 pion-pion amplitude in invariant 
form is 

A (v)^[_{v+\)/vJl2e^ sinSo. (23) 

5Q is real in the elastic region and v is t/\— 1. A{v) has 
cuts on the real axis for — <x> < v^ — 1, 0 ^ v < <x>. 

We write 
A(v) = N(v)/D(v), 

where N(v) has only a cut for — <*> 0 < C — 1 and D(v) 
for 0 ^ y < o o . On 0 ^ J > < C O , ImD(v) is given by 

ImD(v)=-N(v)R [> / (H- l ) ] 1 / 2 , 

where R is the ratio of the total to the elastic cross 
section for the T = 0 w-w interaction. N(v) is real on 
0 ^ J / < O O . Putting R=l we may write the dispersion 

See D. L. Stonehill and H. L. Kraybill (to be published). See W. R. Frazer, reference 16 for a detailed discussion. 
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relation for D(v) 

w Jo \v'+lJ (vf-

N(vf) 

•vo){v' — v) 
(24) 

We have made one subtraction at vo and put D(VQ)=1. 
We now approximate to N(v) by a single pole at v= vh 

j/i<0, with residue T. 

N(v) = T/(v-vi). (25) 

Substituting this in Eq. (24) and taking vo~ V\ gives 

r r t v \1/2 

D(v)=l—(v-vi) dv'( ) 
TT Jo \v' + l/ 

1 

x- (26) 

Since D(vi) = l, Eq. (25) is equivalent to 

ImA(v) = —TTT8(V--VI), 

for y ^ — 1 , so our procedure is effectively to replace 
the left-hand cut in A (v) by a 8 function. 

So, corresponding to every pair of values of the 
parameters r , vh we obtain a solution for the T=0 
pion-pion phase shift 8Q(V), which is determined by 
Eqs. (23), (25), and (26). 

Comparison with Data for 3D+ (s) 

When SD^+CJ) is calculated for different values of 
vx, T, for s lying in the ranges 20 ^ J ̂  32.2, 59.6 ̂  s ̂  76, 
the result is found not to be very sensitive to the values 
of the two parameters simultaneously. For example we 
may say that 3DffT

+(^) is rather insensitive to the value 
of vi (for v\^~S), but for any value of vi, the require
ment that 5>xx+(.y) should provide the energy depend
ence shown by the experimental results determines the 
value of T. So we obtain a one-parameter family of 
phase shifts which give agreement with the data for 
a)+(s). Typical values of v\ and Y with the corresponding 
scattering lengths are shown in Table I I I . 

The corresponding phase shifts are plotted in Fig. 5. 
The values of 3DTT

+(^) for these solutions are shown in 
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"" " - "" • I 1 
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Fig. 4 where they are compared with the 3}+($) data. 
The short-range contributions to £>+(s) have been 
replaced by constants lying in the range — 0.0051 ^ C 
^ —0.0048. Compared with the magnitudes of £>,rT+Cs) 
these constant terms are quite small. We cannot 
appreciably improve the fit in Fig. 4 by giving the 
short-range terms a simple energy dependence. 

We are not particularly concerned by the poor 
agreement with the value of £>+(s) at 5=22. The errors 
involved in the calculation of S)+(s) are largest for the 
values of 5 nearest to the origin, where high partial 
waves are contributing and so we are least concerned 
with the fit to the data at these energies. I t is probable 
that an over-all improvement to the fit could be 
obtained by taking account of d waves; in our opinion, 
however, a quite satisfactory agreement within the 
errors involved is obtained by taking account only of 
s waves in the pion-pion amplitude. 

The fact that different forms for the pion-pion phase 
shift lead to similar values of SD^Cs) is understood 
from Eq. (22). This equation involves an integral over 
the imaginary part of the helicity amplitude Imf+°(tf) 
with a weighting function K+°(s,tf). A more pronounced 

TABLE III 

Solution 

1 
2 
3 
4 

r = 0 pion-pion phase-shift parameters in the 
"one-pole" approximation. 

Pole position 

- 5 
- 1 0 
- 3 0 

- 1 0 0 

Residue 

r 
5 
7 

16 
42 

Scattering length 

4.13 
2.02 
1.58 
1.29 

0 1 2 3 4 

FIG. 5. h{v). The phase-shift solutions 1 to 4 of Table III. 

low-energy behavior of Im/+°(//) can thus be com
pensated for by a more rapid falloff with increasing /'. 
This is understood from the phase-shift solutions in 
Table III. The solutions with large scattering lengths 
correspond to the pole positions v\ closest to the 
physical region. The nearer the pole is to the physical 
region the more rapidly will the phase shift falloff at 
high energies. This behavior is reflected in that of 
Im/+«(0. 

In paper IV an alternative parametrization of the 
r = 0 phase shift is also used. This is based on a con-
formal mapping of the v plane, cut from — 1 to — oo, 
into the unit circle and N(v) is approximated by two 
terms of a polynomial in the transformed variable. 
This permits solutions in which the phase shift changes 
sign. One solution in particular in which the phase shift 
was negative at first, with a negative scattering length, 
and then became positive was found to give good 
agreement with the calculated discrepancies. We 
attempted to fit our data with this phase shift but 
found that it badly failed to give agreement with the 
energy dependence of our results for S)+(s) and so we 
reject this solution for the phase shift. 
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In the next section we use other experimental data, 
from the process p-\-d~»He3+27r, to distinguish 
between the different phase shifts which are in agree
ment with our data for 3D+(s). 

4. THE PROCESS p+d -> He3+2rc 

This process has been investigated by Abashian, 
Booth, and Crowe.7*20,21 They measured the recoil 
spectrum of the He3 ions produced at a fixed angle in 
the laboratory system, the energy of the proton beam 
being kept fixed. Their results are shown in Fig. 6 
where the number of counts is plotted against the He3 

momentum. 
The broken curve in Fig. 6 represents the relativistic 

phase space adjusted for the experimental resolution 
and normalized to fit the low-momentum points. I t is 
seen that there is a pronounced peak above the phase-
space curve in the momentum region which corresponds 
to energies just above threshold in the two-pion system. 
I t was surmized that this could be due to an interaction 
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FIG. 6. Comparison with experimental data for p-j-d —-> He3+2ir 
with solutions 1 to 4 of Table III. The dashed curve represents 
the relativistic phase-space factor. 

between the two pions at energies close to threshold. 
When the analogous experiment p-\~d —>H3+27r was 
performed, no such peak was observed. Consequently, 
if the peak is to be explained by an interaction between 
the pions, this interaction must take place in the T=0 
state. 

An analysis of the data was made, introducing a 
final-state interaction between the two r = 0 pions.21 

The final-state interaction was expressed in terms of 
an enhancement factor modifying the phase-space 
distribution. According to Watson22 this enhancement 
factor should be |^4(v)|2, where A(v) is the T=0 
pion-pion amplitude, given by Eq. (23). With this 
procedure it was shown that good agreement with the 
experimental data could be obtained using a T=0 

20 A. Abashian, N. E. Booth, and K. M. Crowe, Phys. Rev. 
Letters 5, 528 (1960). 

21 N. E. Booth, A. Abashian, and K. M. Crowe, Phys. Rev. 
Letters 7, 35 (1961). 

22 K. M. Watson, Phys. Rev. 88, 1163 (1952). 

T . T : \ = - 0 . 1 5 

CM: <J0 = 2 . 5 

FIG. 7. [y/(vJrl)~]m cot50 for solution 3, solid line; also solution 
of Jacob et al., denoted by JMO; of Taylor and Truong, denoted 
by T.T.; X=—0.15; and the Chew-Mandelstam effective-range 
solution, denoted by CM. , a0=2.5. 

phase shift with a scattering length a 0 ~2.5 . This phase 
shift satisfied the effective range formula of Chew and 
Mandelstam23: In the notation of Sec. 3 above it was a 
solution of our one-pole equations in which the pole 
position was effectively moved to — oo so that the 
function N(p) was approximated by a constant. This 
phase shift, denoted by C M . , is shown in Fig. 7. 

Some uneasiness was felt at the large value of the 
scattering length which was apparently needed: This 
seemed to lead to difficulties in an analysis of pion 
production in low-energy pion-nucleon interactions or 
of r decay. The method of treating final-state inter
actions was re-analyzed by Jacob, Mahoux, and 
Omnes.24 They pointed out that the amplitude T{v) 
for the process p+d —> He3+27r has a cut for real p>0, 
where y = | / — 1 , and / is the square of the total center-
of-mass energy of the two pions. If final-state inter
actions involving the He3 ions are neglected, then 
unitarity tells us that the phase of T(v) for 0^v^3 
is 8Q(V). The remaining singularities of T(v) are un
known, the simplest approximation is to suppose that 
in the region of interest, which is the low-energy part 
of the two-pion cut {v real and 0 ^ y < 3 ) , these should 
give a constant effect. T(y) then takes the form: 

T{v) = C exp 
p r"80(v')d 

LIT Jo v'(vf-

8o(v')dv'' 
(27) 

This is the same result as Eq. (12) if we replace the 
integral over the left-hand cut by the constant C. 

23 G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). 
24 M. Jacob, G. Mahoux, and R. Omnes, Nuovo Cimento 23, 

838 (1962). 
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Jacob et ah, claim to find agreement with the data, 
using | r (y) | 2 as an enhancement factor, for a phase 
shift obtained as a solution to the Chew-Mandelstam 
equations which had a scattering length a =1.6 and 
which is well approximated by a one-pole solution with 
j>i«—5. However, these authors did not take account 
of the experimental resolution in fitting the data: 
Because of this it is difficult to assess the quality of 
the agreement obtained with their phase-shift solution. 

Jackson and Kane25 have shown that if the phase 
shift satisfies the Chew-Mandelstam "effective range" 
formula, T(v) and A(v) are the same and so the two 
methods of treating final-state interactions are the same. 
This is clearly true since the right-hand side of Eq. (27) 
is the function D~l{v) (see Sec. 3) in an N/D solution 
for A{v). If now we put N(v) = constant, to give an 
"effective range" solution for 50M, then A(V)=BN/D 
is the same as T(v). When 8Q(V) differs appreciably 
from an effective range solution, the two enhancement 
factors will differ. This is clearly the case for the above 
solution of Jacob et ah, since we have seen that this is 
approximated by a one-pole solution with the pole at 
P== — 5 which is close to the physical region. 

It is not clear, however, that the enhancement factor 
| T(v) |2 is preferable to | A (v) |2. The derivation of Eq. 
(27) assumed that the contribution of the singularities 
other than from the two-pion interaction could be 
replaced by a constant. In this case T{v) is the same as 
A (v) if A (v) has been derived in the same approximation 
of replacing the effect of the other singularities by a 
constant. In the derivation of T(v) a better approxi
mation would probably have been to replace the effect 
of these other singularities by a pole in just the same 
way as we have done for A (v) in Sec. 3. If this pole is 
very far away from the physical region, it would be 
equivalent to a constant as used above. However, in 
the absence of information about the other singularities 
of T(v), we must regard this pole position as arbitrary. 
We wish to point out that if this pole has the same 
position v\ as the pole used to represent the left-hand 
singularities in A (v), where A (v) is a one-pole solution 
as obtained in Sec. 3, then T{v) and A (v) are again the 
same. More generally, if the left-hand singularities of 
A (v) are represented in a more complicated way, T(v) 
and A (v) are the same provided the remaining singu
larities in T(v) are the same as those in A (v) assuming 
both to have the same asymptotic behavior. This is 
easily seen to be true since both A (v) and T(v) have the 
same phase along the cut 0^ v< oo and their remaining 
singularities are the same. 

In view of these arguments and for convenience of 
calculation we have used | A (v) |2 as the enhancement 
factor to calculate the effects of our phase-shift solutions 
1, 2, 3, 4 (Table III and Fig. 5). The results are shown 
in Fig. 6. Except for solution 1 the results have been 
normalized to the area under the experimental points. 

26 J. D. Jackson and G. L. Kane, Nuovo Cimento 23,444 (1962). 

The experimental resolution shown in (20) has been 
taken into account. For 1, the calculated results have 
been somewhat scaled down in an attempt to improve 
the fit to the peak. It is clear that solution 1 gives too 
large an effect and solution 4 too small. The best 
agreement seems to be obtained with solution 3 
[(j,1==— 30, ao=1.58) (units &=/z = c=l)[] which gives 
good agreement over the whole momentum range. 

A more systematic analysis might attempt to fit the 
results with the pole representing the remaining singu
larities of T(v) in different positions. It seems probable, 
however, that the results will not be very sensitive to 
this pole position25 and for solution 3 the difference 
between our result, where this pole is effectively at 
— 30, and that of Jacob et al., where it is at — oo, is 
probably not great. 

In Fig. 7 we plot [>/(i>+l)]1/2cotSo both for our 
solution 3 and for Jacob's solution. These both have 
the same scattering length but because of the different 
pole positions they have different energy dependences. 
We also show in Fig. 7 [*>/(*>+1)]1/2 cot50 for a phase 
shift obtained by Taylor and Truong26 as a solution to 
the Chew-Mandelstam equations with X= — 0.15. 

5. CONCLUSIONS 

To simplify the task of isolating the two-pion ex
change graphs from the other effects contributing to 
low-energy pion-nucleon scattering, new dispersion 
relations were derived for the s-wave amplitudes. 
These relations suppressed the contributions from 
unknown short-range processes and emphasized the 
low-energy features of interest. They were used to 
evaluate the two-pion exchange terms from low-energy 
pion-nucleon scattering data. 

Figures 3 and 4 show the calculated values of the 
discrepancies SDrfr) and S)+(s), the superscripts — and 
+ referring to isotopic spin T=l and T=0 for the 
pion pair. These include unknown short-range contri
butions in addition to the two-pion terms but the 
dispersion relations were chosen so as to suppress these 
short-range effects and the results for £>*(,?) are well 
fitted with small constant terms due to short-range 
effects together with larger and strongly energy-
dependent terms due to the two-pion exchange. It is 
quite clear from the characteristic energy dependences 
of the data in Figs. 3 and 4 that these are primarily 
due to the exchange of a pair of pions in the appropriate 
isotopic spin state, so that the relevant graphs have 
indeed been isolated from the experimental data. 

The results for the two-pion exchange graphs were 
analyzed in terms of the pion-pion interaction in the 
r = l and T=0 states, leading to the following 
conclusions: 

J. G. Taylor and T. N. Truong (to be published). 



P I O N - P I O N I N T E R A C T I O N S I N S T A T E S T - 0 A N D T - l 1857 

A. The T = l Pion-Pion Interaction 
The data for £r(s) were very well fitted in terms of a 

single £-wave resonance at an energy of about 750 MeV, 
corresponding to the observed p meson. Combining the 
results of this analysis with electron-nucleon scattering 
data the half-width of this resonance at half maximum 
was calculated to lie between 40 and 60 MeV. To 
obtain these figures we neglected the effect of inelastic 
processes: It could be on account of the fairly high 
energy that these would lead to some modification in 
the result for the width. 

There is no direct evidence for a contribution from 
the region of 550 MeV (f meson?). However, the 
calculated curve is not very sensitive to the two-pion 
energy and a smaller contribution at 550 MeV together 
with the p meson could still give good agreement. 

B. The r = 0 Pion-Pion Interaction 

We defined JT=0, pion-pion 5-wave phase shifts in 
terms of two parameters, corresponding to the position 
and residue of the pole in one-pole approximate solu
tions to the Chew-Mandelstam equations. Fitting with 
the data for 3D+(̂ ) only fixed one of these parameters, 
leaving us with a one parameter family of possible 
solutions. To distinguish between these, we used the 
experimental data for the process p+d—>He3+27r 
and attempted to satisfy these in terms of a final-state 

r = 0 pion-pion interaction. This enabled us to single 
out a phase shift which gave agreement both with 
these data and with the results for £>+(s). This phase 
shift has a scattering length #o~1.6 and corresponds 
to a solution of the Chew-Mandelstam equations in 
which the left-hand cut is approximated by a 8 function 
at v = - 3 0 . In Fig. 7, [> /0+l ) ] 1 / 2 cot50 is plotted 
against v for this phase shift do. It is seen that it lies 
close to the solution to the Chew-Mandelstam equa
tions obtained by Taylor and Truong26 for a " coupling 
constant" X= — 0.15, although this has a smaller scat
tering length than our solution. Our phase shift gives 
the value A=-0.18. [-5X is A{v) at ^ = - f . ] The 
Chew-Mandelstam effective-range solution with a0=2.5 
is also shown in Fig. 7 for comparison. 
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